Time-dependent changes in excitability after one-trial conditioning of Hermissenda.
نویسندگان
چکیده
The visual system of Hermissenda has been studied extensively as a site of cellular plasticity produced by classical conditioning. A one-trial conditioning procedure consisting of light paired with the application of serotonin (5-HT) to the exposed, but otherwise intact, nervous system produces suppression of phototactic behavior tested 24 h after conditioning. Short- and long-term enhancement (STE and LTE) of excitability in identified type B photoreceptors is a cellular correlate of one-trial conditioning. LTE can be expressed in the absence of STE suggesting that STE and LTE may be parallel processes. To examine the development of enhancement, we studied its time-dependent alterations after one-trial conditioning. Intracellular recordings from identified type B photoreceptors of independent groups collected at different times after conditioning revealed that enhanced excitability follows a biphasic pattern in its development. The analysis of spikes elicited by 2 and 30 s extrinsic current pulses at different levels of depolarization showed that enhancement reached a peak 3 h after conditioning. From its peak, excitability decreased toward baseline control levels 5-6 h after conditioning followed by an increase to a stable plateau at 16 to 24 h postconditioning. Excitability changes measured in cells from unpaired control groups showed maximal changes 1 h posttreatment that rapidly decremented within 2 h. The conditioned stimulus (CS) elicited significantly more spikes 24 h postconditioning for the conditioned group as compared with the unpaired control group. The analysis of the time-dependent development of enhancement may reveal the processes underlying different stages of memory for this associative experience.
منابع مشابه
Inhibition of conditioned stimulus pathway phosphoprotein 24 expression blocks the reduction in A-type transient K+ current produced by one-trial in vitro conditioning of Hermissenda.
Long-term intrinsic enhanced excitability is a characteristic of cellular plasticity and learning-dependent modifications in the activity of neural networks. The regulation of voltage-dependent K+ channels by phosphorylation/dephosphorylation and their localization is proposed to be important in the control of cellular plasticity. One-trial conditioning in Hermissenda results in enhanced excita...
متن کاملProtein synthesis-dependent and mRNA synthesis-independent intermediate phase of memory in Hermissenda.
The conditioned stimulus pathway in Hermissenda has been used to examine the time-dependent mechanisms of memory consolidation following one-trial conditioning. Here we report an intermediate phase of memory consolidation following one-trial conditioning that requires protein synthesis, but not mRNA synthesis. In conditioned animals, enhanced excitability normally expressed during an intermedia...
متن کاملSynaptic enhancement and enhanced excitability in presynaptic and postsynaptic neurons in the conditioned stimulus pathway of Hermissenda.
Identified type A photoreceptors of Hermissenda express differential effects of classical conditioning. Lateral type A photoreceptors exhibit an increase in excitability to both the conditioned stimulus (CS; light) and extrinsic current. In contrast, medial type A photoreceptors do not express enhanced excitability, but do show enhancement of the medial B to medial A synaptic connection. Theref...
متن کاملIn vitro conditioning induces morphological changes in Hermissenda type B photoreceptor.
Short- and long-term synaptic plasticity are considered to be cellular substrates of learning and memory. The mechanisms underlying synaptic plasticity especially with respect to morphology, however, are not known. In vitro conditioning in molluscan preparations is a well established form of short-term synaptic plasticity. Five paired presentations of light and vestibular stimulation to the iso...
متن کاملPP1 inhibitors depolarize Hermissenda photoreceptors and reduce K+ currents.
Previous research indicates that activation of protein kinase C (PKC) plays a critical role in the induction and maintenance of memory-related changes in neural excitability of Type B photoreceptors in the eyes of nudibranch mollusk Hermissenda crassicornis (H.c.). The enhanced excitability of B cells is due in part to PKC-mediated reduction in somatic K+ currents. Here we examined the effects ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 78 6 شماره
صفحات -
تاریخ انتشار 1997